457 research outputs found

    LogMap family participation in the OAEI2018

    Get PDF
    We present the participation of LogMap and its variants in the OAEI 2018 campaign. The LogMap project started in January 2011 with the objective of developing a scalable and logic-based ontology matching system. This is our eight participation in the OAEI and the experience has so far been very positive. LogMap is one of the few systems that participates in (almost) all OAEI tracks

    Detecting and Correcting Conservativity Principle Violations in Ontology-to-Ontology Mappings

    Full text link
    In order to enable interoperability between ontology-based systems, ontology matching techniques have been proposed. However, when the generated mappings suffer from logical flaws, their usefulness may be diminished. In this paper we present an approximate method to detect and correct violations to the so-called conservativity principle where novel subsumption entailments between named concepts in one of the input ontologies are considered as unwanted. We show that this is indeed the case in our application domain based on the EU Optique project. Additionally, our extensive evaluation conducted with both the Optique use case and the data sets from the Ontology Alignment Evaluation Initiative (OAEI) suggests that our method is both useful and feasible in practice.Copyright 2014 Springer International Publishing Switzerland. The final publication is available at http://link.springer.com/chapter/10.1007%2F978-3-319-11915-1_

    日本経団連が国家エネルギー戦略確立を提言

    Get PDF
    This paper describes the outcomes of an ongoing collaboration between Siemens and the University of Oxford, with the goal of facilitating the design of ontologies and their deployment in applications. Ontologies are often used in industry to capture the conceptual information models underpinning applications. We start by describing the role that such models play in two use cases in the manufacturing and energy production sectors. Then, we discuss the formalisation of information models using ontologies, and the relevant reasoning services. Finally, we present SOMM—a tool that supports engineers with little background on semantic technologies in the creation of ontology-based models and in populating them with data. SOMM implements a fragment of OWL 2 RL extended with a form of integrity constraints for data validation, and it comes with support for schema and data reasoning, as well as for model integration. Our preliminary evaluation demonstrates the adequacy of SOMM’s functionality and performance

    Reuse of terminological resources for efficient ontological engineering in Life Sciences

    Get PDF
    This paper is intended to explore how to use terminological resources for ontology engineering. Nowadays there are several biomedical ontologies describing overlapping domains, but there is not a clear correspondence between the concepts that are supposed to be equivalent or just similar. These resources are quite precious but their integration and further development are expensive. Terminologies may support the ontological development in several stages of the lifecycle of the ontology; e.g. ontology integration. In this paper we investigate the use of terminological resources during the ontology lifecycle. We claim that the proper creation and use of a shared thesaurus is a cornerstone for the successful application of the Semantic Web technology within life sciences. Moreover, we have applied our approach to a real scenario, the Health-e-Child (HeC) project, and we have evaluated the impact of filtering and re-organizing several resources. As a result, we have created a reference thesaurus for this project, named HeCTh

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    corecore